

4 串可充电锂电池保护 IC

CM1044-AY 是一款专用于 4 串可充电锂/铁电池的保护芯片,内置有高精度电压检测电路和电流检测电路,通过检测各 节电池的电压、充放电电流等信息,实现电池过充电、过放电、放电过流、短路、充电过流等保护功能,过流保护延时外置 电容可调,其他保护延时均内置。

■ 功能特点

11 原附及电池地域为用	1)	高精度电池电压检测功能
--------------	----	-------------

● 过充电保护电压	4.250 V	精度 ±25 mV
● 过充电解除电压	4.150 V	精度 ±50 mV
● 过放电保护电压	2.700 V	精度 ±80 mV
● 过放电解除电压	3.000 V	精度 ±100 mV
三段放电过流保护功能		

2)

● 过电流 1 保护电压	0.100 V	精度 ±10 mV
● 过电流 2 保护电压	0.200 V	精度 ±15%
● 短路保护电压	0.500 V	精度 ±20%

3) 充电过流保护功能

● 充电过流保护电压	-0.050V	精度 ±10 mV
------------	---------	-----------

- 4) 充电器检测及负载检测功能
- 5) 电池断线保护功能
- 6) 低电流消耗

● 工作时	12 μA (典型值) (Ta = +25°C)
● 休眠时	4.0 μA (典型值) (Ta = +25°C)

7) RoHS、无铅、无卤素

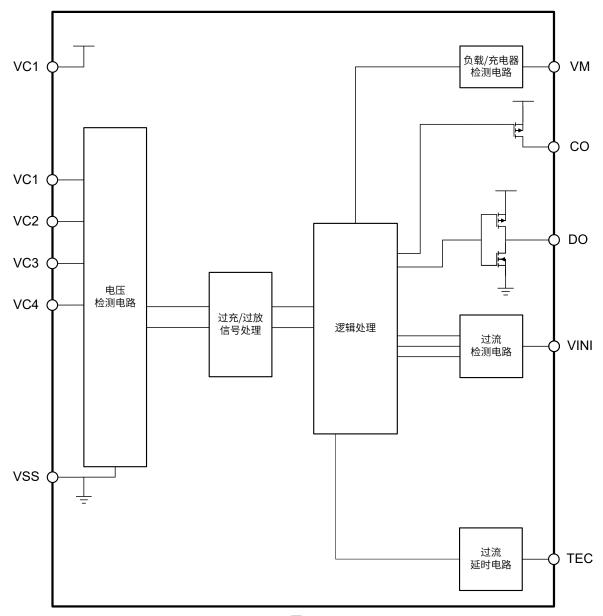
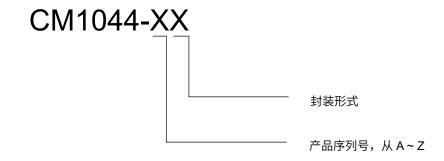
■ 应用领域

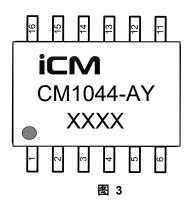
- 吸尘器
- 电动工具
- UPS 后备电源

■ 封装

• YSOP12

■ 系统功能框图


图 1

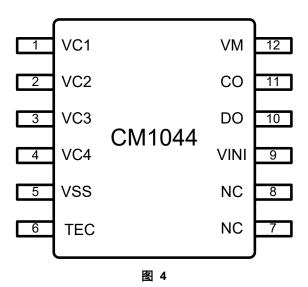
■ 命名规则

■ 印字说明

第一行:LOGO

第二行:产品型号

第三行: 生产批次


■ 产品目录

产品名称	过充电	过充电	过放电	过放电	放电	放电	短路	充电
	保护电压	解除电压	保护电压	解除电压	过流 1	过流 2	保护	过流
	V oc	V _{OCR}	V oo	V _{ODR}	V _{EC1}	V EC2	V _{SHORT}	V _{CHA}
CM1044-AY	4.250 V	4.150 V	2.700 V	3.000 V	0.100 V	0.200 V	0.500 V	-0.050 V

表 1

■ 引脚排列图

引脚号	符号	描述
1	VC1	电池 1 的正电压连接端子
2	VC2	电池 1 的负电压连接端子、电池 2 的正电压连接端子
3	VC3	电池 2 的负电压、电池 3 的正电压连接端子
4	VC4	电池 3 的负电压、电池 4 的正电压连接端子
5	VSS	芯片地、电池4的负电压连接端子
6	TEC	放电过流延时调节端子
7	NC	空引脚,无电气连接特性
8	NC	空引脚,无电气连接特性
9	VINI	过流检测端子
10	DO	放电 MOS 控制端子
11	СО	充电 MOS 控制端子
12	VM	充电器及负载检测端子

表 2

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目 符号		适用端子	绝对最大额定值	单位
输入电压 0	Vcell	VC4-VSS, VC3-VC4, VC2-VC3, VC1- VC2	0 ~ 12	V
输入电压 1	V _{IN1}	TEC	VSS-0.3 ~ VSS+5.5	V
输入电压 2	V _{IN2}	VM, CO	VSS-15 ~ VC1+0.3	V
输入电压 3	V _{IN3}	VINI, DO	VSS-0.3 ~ VC1+0.3	V
工作环境温度	Topr	_	-40 ~ + 85	°C
保存温度	TstG		−55 ~ +125	°C

表 3

注意: 所加电压超过绝对最大额定值,可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C)

					(PATT)AA)	王明以外: la = l	,
	项目	符号	测试条件	最小值	典型值	最大值	单 位
-	工作电压	VC1	-	5	-	25	V
正符	常工作电流	I _{VC1}	V1=V2=V3=V4=3.5V	-	12	18	μA
1	休眠电流	I _{STB}	V1=V2=V3=V4=2.0V	-	4.0	6.0	μA
	保护电压	V _{oc}	V1=V2=V3=V4=3.5V, V4=3.5 → 4.4V	4.225	4.250	4.275	٧
过 充	解除电压	V _{OCR}	V1=V2=V3=V4=3.5V, V4=4.4 → 3.5V	4.100	4.150	4.200	٧
电	保护延时	T _{oc}	V1=V2=V3=V4=3.5V, V4=3.5 → 4.4V	0.5	1.0	1.5	s
	恢复延时	T _{OCR}	V1=V2=V3=V4=3.5V, V4=4.4 → 3.5V	128	256	384	ms
	保护电压	V _{OD}	V1=V2=V3=V4=3.5V, V4=3.5 → 2.0V	2.620	2.700	2.780	V
过放	解除电压	V_{ODR}	V1=V2=V3=V4=3.5V, V4=2.0 → 3.5V	2.900	3.000	3.100	٧
电	保护延时	T _{OD}	V1=V2=V3=V4=3.5V, V4=3.5 → 2.0V	0.5	1.0	1.5	s
	恢复延时	T _{ODR}	V1=V2=V3=V4=3.5V, V4=2.0 → 3.5V	24	48	72	ms
放电	保护电压	V _{EC1}	V1=V2=V3=V4=3.5V, VINI=0 → 0.12V	0.090	0.100	0.110	٧
过流 1	保护延时	T _{EC1}	V1=V2=V3=V4=3.5V, VINI=0 \rightarrow 0.12V, C_{TEC} =0.1 μ F (±1%)	0.5	1.0	1.5	s
放电过流	保护电压	V _{EC2}	V1=V2=V3=V4=3.5V, VINI=0 → 0.35V	0.170	0.200	0.230	>
2	保护延时	T _{EC2}	V1=V2=V3=V4=3.5V, VINI=0 \rightarrow 0.35V, C _{TEC} =0.1µF (±1%)	50	100	150	ms
たこのな	保护电压	V _{SHORT}	V1=V2=V3=V4=3.5V, VINI=0 → 0.8V	0.400	0.500	0.600	٧
短路	保护延时	T _{SHORT}	V1=V2=V3=V4=3.5V, VINI=0 → 0.8V	125	250	375	μs
	放电过流 解除延时	T _{ECR}	V1=V2=V3=V4=3.5V, VINI=0.8 → 0V	16	32	48	ms
充电	保护电压	V _{CHA}	V1=V2=V3=V4=3.5V, VINI=0→ -1V	-0.060	-0.050	-0.040	٧
ゼ	保护延时	T _{CHA}	V1=V2=V3=V4=3.5V, VINI=0→ -1V	128	256	384	ms

	项目	符号	测试条件	最小值	典型值	最大值	单 位
流	解除延时	T _{CHAR}	V1=V2=V3=V4=3.5V, VINI=-1V→0V	24	48	72	ms
断线	保护延时	T _{ow}	-	260	520	780	ms
保护	解除延时	T _{OWR}	-	24	48	72	ms
VM	VM-VSS 电阻		V1=V2=V3=V4=3.5V, VINI=0.200V	-	70	-	kΩ
С	O、DO 高	V _{COH} ,	VC1>12V	-	10.8	-	.,
1	输出电平		VC1<12V	-	VC1-0.7	-	V
С	O、DO 低	V _{COL}		-	Hi-Z	-	V
1	输出电平	V_{DOL}		-	VSS	-	V
CO 高电平输出电阻		R _{COH}	V1=V2=V3=V4=3.5V, V _{CO} =CO 高输出电平-1.0V	-	8.0	-	kΩ
CO 低	电平输出电阻	R _{COL}	V1=V2=V3=3.5V, V4=4.5V V _{CO} =1.0V	-	Hi-Z	•	kΩ
DO 高	1电平输出电阻	R _{DOH}	V1=V2=V3=V4=3.5V, V _{DO} =DO 高输出电平-1.0V	-	8.0	-	kΩ
DO 低	电平输出电阻	R _{DOL}	V1=V2=V3=3.5V, V4=1.5V V _{DO} =1.0V	-	0.5	-	kΩ

表 4

■ 功能说明

1. 过充电

任意一节电池电压上升到 V_{OC} 以上并持续一段时间超过 T_{OC} ,CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这称为过充电状态。所有电池电压降低到过充电解除电压 V_{OCR} 以下并持续一段时间超过 T_{OCR} ,过充电状态解除,恢复为正常状态。若此时连接负载 $V_{VM} > 0.1V$ (典型值),当所有电池电压降低到过充电保护电压 V_{OC} 以下时,过充电状态解除,恢复为正常状态,此功能称作负载检测功能。

2. 过放电

任意一节电池电压降低到 Vop 以下并持续一段时间超过 Top,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这称为过放电状态。所有电池电压上升到过放电解除电压 VopR 以上,且 VM 电压小于 3.0V(典型值),并持续一段时间超过 TopR,过放电状态解除,恢复为正常状态。若此时连接充电器 VvM < -0.1V(典型值),当所有电池电压上升到过放电保护电压(Vop)以上时,过放电状态解除,恢复为正常状态,此功能称作充电器检测功能。

3. 放电过电流

电池处于放电状态时,VINI 端电压随着放电电流的增大而增大,当 VINI 端电压高于 V_{EC1} 并持续一段时间超过 T_{EC1} ,芯片认为出现了放电过流 1;当 VINI 端电压高于 V_{EC2} 并持续一段时间超过 T_{EC2} ,芯片认为出现了放电过流 2;当 VINI 端电压高于 V_{SHORT} 并持续一段时间超过 V_{SHORT} 并持续一段时间超过 V_{SHORT} 芯片认为出现了短路。上述 3 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电。进入放电过流保护状态后,断开负载且 V_{VM} < 3.0V,放电过流保护解除,恢复为正常状态。

4. 充电过电流

正常工作状态下的电池,在充电过程中,如果 VINI 端子电压低于充电过流保护电压(V_{CHA}),且这种状态持续的时间超过充电过流保护延迟 T_{CHA},将充电控制 MOS 管关断,停止充电,这种状态称为充电过流状态。进入充电过流保护状态后,如果断开充电器且 V_{VM}>V_{CHA},充电过电流状态被解除,恢复为正常状态。

5. 断线保护

正常状态下,若芯片管脚 VC1~VC4 中任意一根或多根与电芯的连线断开,芯片则检测判断为发生断线状态,强制将 CO、DO 输出电平反转,同时关断充、放电 MOS,禁止充电与放电,此状态称为断线保护状态。当断开的连线重新正确连接后,芯片退出断线保护状态。

6. 放电过流延迟时间设置

CM1044-AY 放电过流保护延时可通过外置电容调节。放电过流 1 与放电过流 2 保护延时时间比例为 10:1, 延迟时间与 CTEC 可按如下公式进行设置:

T_{EC1} = 10*C_{TEC}, (T_{EC1} 单位为 ms, C_{TEC} 单位为 nF)

 $T_{EC2} = T_{EC1}/10$

可参考如下表格设定:

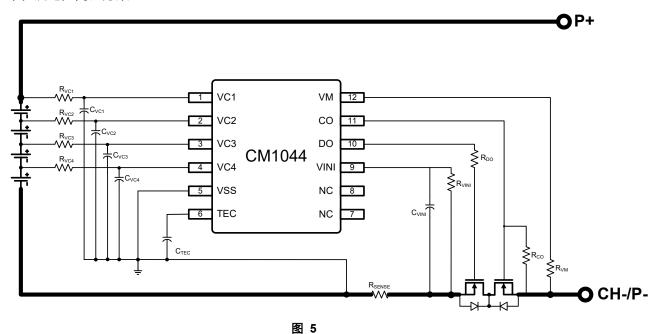

Стес	T _{EC1}	T _{EC2}
47 nF	470 ms	47 ms
100 nF	1000 ms	100 ms

表 5

■ 应用电路

1. 带检流电阻同口方案

2. 带检流电阻分口方案

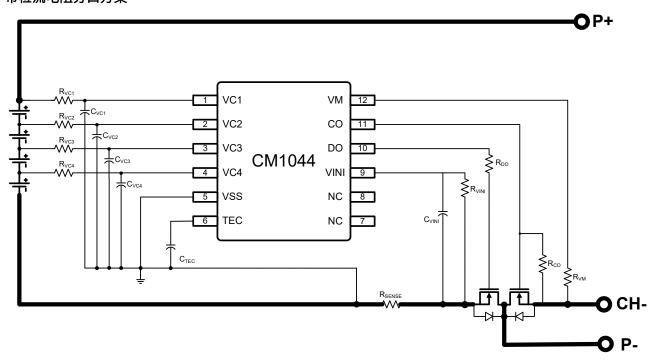


图 6

■ BOM 清单

器件标识	典型值	参数范围	单位
Rvc1 ~ Rvc4	1	0.33 ~ 2	kΩ
Rvini	10	1 ~ 100	kΩ
R _{VM}	10	1 ~ 50	kΩ
Rco	10	3.3 ~ 15	МΩ
R _{DO}	1	0 ~ 5	kΩ
Rsense	-	可依实际过流值设定	mΩ
C _{VC1}	1.0	0.1~4.7µF,耐压≥25V	μF
Cvc2~Cvc4	0.1	0.1~1µF, 耐压≥25V	μF
Cvini	10	4.7 ~ 47	nF
Стес	0.1	0.01~1.0,依据过流 1 延时需要设定	μF

表 6

注意:

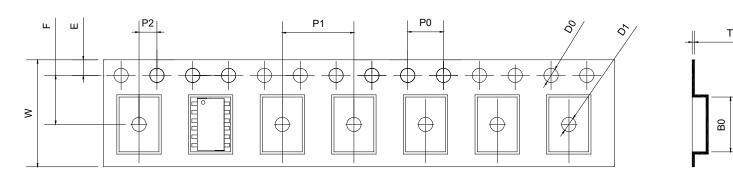
- 1. 如非上述两种典型应用方案应用,请咨询我司FAE。
- 2. 其它特殊应用电路需要更改部分BOM,例如P充N放方案、超大电流充放电等。
- 3. Rco、Roo等电阻的值需要结合MOSFET的器件参数和系统级功能需求进行调试。
- 4. 上述参数有可能不经预告而作更改。
- 5. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

■ 封装信息

YSOP12 封装尺寸

图 7

图 /							
符号	尺寸 (mm)						
	最小值	典型值	最大值				
Α	1.20	1.30	1.40				
A1	0.65	0.70	0.75				
В	5.60	5.80	6.00				
B1	4.70	4.75	4.80				
B2	2.80	2.85	2.90				
С	2.80	3.00	3.20				
C1	4.10	4.20	4.30				
Е	0.90	0.95	1.00				
E1	0.30	0.40	0.50				
E2	-	0.05	-				
F	0.35	0.43	0.51				
F1	0.01	0.05	0.09				
F2	-	0.25	-				
I	13°	15°	17°				
J	2°	5°	8°				
K	-	R0.1	-				


表 7

■ 载带信息

YSOP12

Loaded tape feed direction \rightarrow

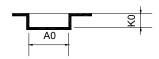


图 8

Type	W*P1	Unit	
YSOP12	12.0*8.0	mm	
Item	Specification	Tol (+/-)	
W	12.00	+0.30/-0.10	
F	5.50	±0.10	
Е	1.75	±0.10	
P2	2.00	±0.10	
P1	8.00	±0.10	
P0	4.00	±0.10	
P0*10	40.00	±0.20	
D0	1.50 +0.10/-0		
Т	0.25	±0.05	
В0	6.15	±0.10	
A0	4.45	±0.10	
K0	1.55	±0.10	

表 8

■ 卷盘信息

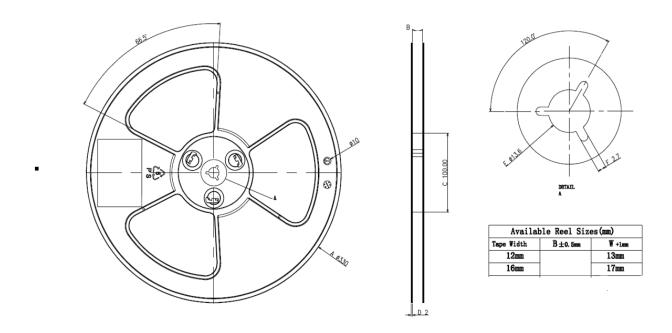


图 9

■ 包装信息

封装形式	卷盘	PCS/盘	盘/盒	盒/箱
YSOP12	13"×12mm	4000	2	8

使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 2. 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题,本公司对此概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗 不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公 司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可靠性电路中,例如:医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等,亦不得作为其部件使用。 本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自行负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容,未经本公司许可,严禁用于其它目的的转载或复制。