



# 两串可充电锂电池保护 IC

CM1025-R 是一款专用于 2 串锂/铁电池的保护芯片,内置有高精度电压检测电路和电流检测电路。支持过充电、过放电、放电过电流、短路、充电过电流的检测。

### ■ 功能特点

| 1) | 高精度电压检测功能  |
|----|------------|
| 1) | 高相及 电压位测り用 |

| • 过充电保护电压 | 4.425 V | 精度 ±25 mV  |
|-----------|---------|------------|
| • 过充电解除电压 | 4.225 V | 精度 ±50 mV  |
| • 过放电保护电压 | 2.820 V | 精度 ±80 mV  |
| • 过放电解除电压 | 3.050 V | 精度 ±100 mV |

2) 2段放电过电流保护功能

| • 过电流保护电压 | 0.130 V | 精度 ±10% |
|-----------|---------|---------|
| • 短路保护电压  | 0.650 V | 精度 ±10% |

3) 充电过流保护电压

• 充电过流保护电压 -0.100 V 精度 ±10%

4) 充电器检测及负载检测功能

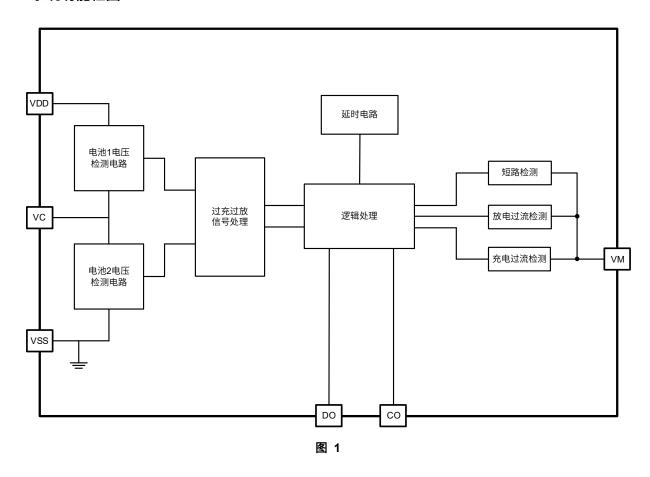
5) 向 0V 电池充电功能 允许

6) 低电流消耗

工作时 3.5 μA (典型值) (Ta = +25°C)
・过放时 3.0 μA (典型值) (Ta = +25°C)

7) RoHS、无铅、无卤素

#### ■ 应用领域


• 2 节串联锂/铁可充电电池组

#### ■ 封装

• SOT23-6

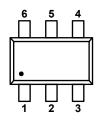


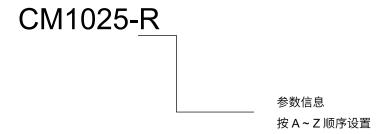
### ■ 系统功能框图





# ■ 引脚排列图





图 2

| 引脚号 | 符号  | 描述                       |  |
|-----|-----|--------------------------|--|
| 1   | DO  | 放电控制用 MOSFET 门极连接端子      |  |
| 2   | СО  | 充电控制用 MOSFET 门极连接端子      |  |
| 3   | VM  | 过电流检测端子,充电器检测端子          |  |
| 4   | VC  | 电池 1 的负电压、电池 2 的正电压连接端子  |  |
| 5   | VDD | 正电源输入端子,电池 1 正电压连接端子     |  |
| 6   | VSS | 接地端,负电源输入端子,电池 2 负电压连接端子 |  |

表 1



### ■ 命名规则



### ■ 印字说明

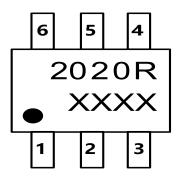



图 3

第一行:产品系列代码

第二行: "XXXX" 为生产批次



# ■ 产品列表

## 1. 检测电压表

| 产品型号     | 过充电         | 过充电          | 过放电         | 过放电          | 放电          | 短路                 | 充电               |
|----------|-------------|--------------|-------------|--------------|-------------|--------------------|------------------|
|          | 保护电压        | 解除电压         | 保护电压        | 解除电压         | 过流          | 保护                 | 过流               |
|          | <b>V</b> oc | <b>V</b> ocr | <b>V</b> od | <b>V</b> odr | <b>V</b> εc | V <sub>SHORT</sub> | V <sub>CHA</sub> |
| CM1025-R | 4.425 V     | 4.225 V      | 2.820 V     | 3.050 V      | 0.130 V     | 0.650 V            | -0.100 V         |

表 2

### 2. 延迟时间代码

| 过充电保护延时 | 过放电保护延时         | 放电过流延时          | 充电过流延时           | 短路延时               |
|---------|-----------------|-----------------|------------------|--------------------|
| Toc     | T <sub>OD</sub> | T <sub>EC</sub> | T <sub>CHA</sub> | T <sub>SHORT</sub> |
| 1000 ms | 128 ms          | 10 ms           | 8 ms             | 250 µs             |

表 3

# 3. 功能代码

| 过充自恢复功能 | 休眠功能 | 向 <b>0V</b> 电池充电功能 |
|---------|------|--------------------|
| 无       | 无    | 允许                 |

表 4



### ■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

| 项目 符号         |                  | 绝对最大额定值           | 单位 |
|---------------|------------------|-------------------|----|
| VDD,VC 输入输出电压 | VDD-VC, VC-VSS   | -0.3 ~ +10.0      | V  |
| CO 输出端子电压     | Vco              | VDD-20 ~ VDD+0.3  | V  |
| DO 输出端子电压     | V <sub>DO</sub>  | VSS-0.3 ~ VDD+0.3 | V  |
| VM 输入端子电压     | V <sub>VM</sub>  | VDD-20 ~ VDD+0.3  | V  |
| 工作温度范围        | Topr             | <b>−40 ~ +85</b>  | °C |
| 储存温度范围        | T <sub>STG</sub> | −55 ~ +125        | °C |

表 5

注意: 所加电压超过绝对最大额定值,可能导致芯片发生不可恢复性损伤。



# ■ 电气特性

(除特殊注明以外: Ta = +25°C)

| 项目                         | 符号               | 测试条件                            | 最小值     | 典型值             | 最大值                  | 单位 |
|----------------------------|------------------|---------------------------------|---------|-----------------|----------------------|----|
| [功耗]                       |                  |                                 |         |                 |                      |    |
| 正常工作电流                     | I <sub>DD</sub>  | V1=V2=3.5V, V <sub>VM</sub> =0V | -       | 3.5             | 6.0                  | μΑ |
| 过放电流                       | IOPED            | V1=V2=1.5V, V <sub>VM</sub> =3V | -       | 3.0             | 6.0                  | μΑ |
| [检测电压]                     |                  |                                 |         |                 |                      |    |
| 过充电保护电压                    | Voc              |                                 | 4.400   | 4.425           | 4.450                | V  |
| 过充电解除电压                    | V <sub>OCR</sub> |                                 | 4.175   | 4.225           | 4.275                | ٧  |
| 过放电保护电压                    | Vod              |                                 | 2.740   | 2.820           | 2.900                | ٧  |
| 过放电解除电压                    | Vodr             |                                 | 2.950   | 3.050           | 3.150                | V  |
| 放电过流保护电压                   | V <sub>EC</sub>  |                                 | 0.117   | 0.130           | 0.143                | V  |
| 短路保护电压                     | Vshort           |                                 | 0.585   | 0.650           | 0.715                | V  |
| 充电过流保护电压                   | V <sub>CHA</sub> |                                 | -0.110  | -0.100          | -0.090               | V  |
| [延迟时间]                     |                  |                                 |         |                 |                      |    |
| 过充电保护延时                    | Toc              |                                 | 500     | 1000            | 1500                 | ms |
| 过放电保护延时                    | T <sub>OD</sub>  |                                 | 64      | 128             | 192                  | ms |
| 放电过流保护延时                   | T <sub>EC</sub>  |                                 | 5       | 10              | 15                   | ms |
| 充电过流保护延时                   | Тсна             |                                 | 4       | 8               | 12                   | ms |
| 短路保护延时                     | Tshort           |                                 | 125     | 250             | 375                  | μs |
| [控制端子输出电压]                 |                  |                                 |         |                 |                      |    |
| DO 端子输出高电压                 | V <sub>DH</sub>  |                                 | VDD-0.1 | VDD             | -                    | V  |
| DO 端子输出低电压                 | $V_{DL}$         |                                 | -       | VSS             | 0.3                  | V  |
| CO 端子输出高电压                 | $V_{CH}$         |                                 | VDD-0.1 | VDD             | -                    | V  |
| CO 端子输出低电压                 | VcL              |                                 | -       | V <sub>VM</sub> | V <sub>VM</sub> +0.3 | V  |
| [向 0V 电池充电的功能]             |                  |                                 |         |                 |                      |    |
| 充电器起始电压<br>(允许向 0V 电池充电功能) | V <sub>0CH</sub> | 允许向 0V 电池充电功能                   | 0       | 0.7             | 1.5                  | V  |

表 6



### ■ 电气特性

(除特殊注明以外: Ta = -40°C~+85°C\*1)

| 项目                         | 符号               | 测试条件                            | 最小值     | 典型值             | 最大值                  | 单位 |
|----------------------------|------------------|---------------------------------|---------|-----------------|----------------------|----|
| [功耗]                       |                  |                                 |         |                 |                      |    |
| 正常工作电流                     | I <sub>DD</sub>  | V1=V2=3.5V, V <sub>VM</sub> =0V | -       | 3.5             | 8.0                  | μA |
| 过放电流                       | IOPED            | V1=V2=1.5V, V <sub>VM</sub> =3V | -       | 3.0             | 7.0                  | μA |
| [检测电压]                     |                  |                                 |         |                 |                      |    |
| 过充电保护电压                    | Voc              |                                 | 4.375   | 4.425           | 4.475                | V  |
| 过充电解除电压                    | V <sub>OCR</sub> |                                 | 4.125   | 4.225           | 4.325                | V  |
| 过放电保护电压                    | Vod              |                                 | 2.720   | 2.820           | 2.920                | ٧  |
| 过放电解除电压                    | Vodr             |                                 | 2.930   | 3.050           | 3.170                | V  |
| 放电过流保护电压                   | V <sub>EC</sub>  |                                 | 0.110   | 0.130           | 0.150                | V  |
| 短路保护电压                     | Vshort           |                                 | 0.552   | 0.650           | 0.748                | V  |
| 充电过流保护电压                   | V <sub>CHA</sub> |                                 | -0.115  | -0.100          | -0.085               | V  |
| [延迟时间]                     |                  |                                 |         |                 |                      |    |
| 过充电保护延时                    | Toc              |                                 | 400     | 1000            | 1600                 | ms |
| 过放电保护延时                    | Tod              |                                 | 51.2    | 128             | 204.8                | ms |
| 放电过流保护延时                   | T <sub>EC</sub>  |                                 | 4       | 10              | 16                   | ms |
| 充电过流保护延时                   | Тсна             |                                 | 3.2     | 8               | 12.8                 | ms |
| 短路保护延时                     | Tshort           |                                 | 100     | 250             | 400                  | μs |
| [控制端子输出电压]                 |                  |                                 |         |                 |                      |    |
| DO 端子输出高电压                 | V <sub>DH</sub>  |                                 | VDD-0.1 | VDD             | -                    | V  |
| DO 端子输出低电压                 | $V_{DL}$         |                                 | -       | VSS             | 0.5                  | V  |
| CO 端子输出高电压                 | $V_{CH}$         |                                 | VDD-0.1 | VDD             | -                    | V  |
| CO 端子输出低电压                 | VcL              |                                 | -       | V <sub>VM</sub> | V <sub>VM</sub> +0.5 | ٧  |
| [向 0V 电池充电的功能]             |                  |                                 |         |                 |                      |    |
| 充电器起始电压<br>(允许向 0V 电池充电功能) | V <sub>0CH</sub> | 允许向 0V 电池充电功能                   | 0       | 0.7             | 1.8                  | \  |

表 7

<sup>\*1.</sup>并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。



#### ■ 功能描述

#### 1. 正常工作状态

IC持续检测连接在VDD与VC端子之间电池1的电压、连接在VC与VSS端子之间电池2的电压,以及VM与VSS端子之间的电压,来控制充电和放电。当电池1和电池2的电压都在过放电保护电压(VoD)以上并在过充电保护电压(VoC)以下,且VM端子电压在充电过流保护电压(VcHA)以上并在放电过流保护电压(VEC)以下时,IC的CO和DO端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,可以正常充电和放电。

注意:初次连接电芯时,会有不能放电的可能性,短接VM端子和VSS端子,或者连接充电器,就能恢复到正常工作状态。

#### 2. 过充电状态

正常工作状态下的电池,在充电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之间电池2的电压,超过过充电保护电压(Voc),并且这种状态持续的时间超过过充电保护延迟时间(Toc)时,IC的CO端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET,停止充电,这个状态称为"过充电状态"。

过充电状态在如下两种情况下可以解除,CO端子输出电压由低电平变为高电平,使充电控制用MOSFET导通。

- 1) 断开充电器,由于自放电使电池1和电池2的电压都降低到过充电解除电压(V<sub>OCR</sub>)以下时,过充电状态解除,恢复到正常工作状态。
- 2) 断开充电器,连接负载,当电池1和电池2的电压都降低到过充电保护电压(Voc)以下时,过充电状态解除,恢复到正常工作状态,此功能称为负载检测功能。

注意:在发生过充电保护后连接着充电器的情况下,即使电池电压下降到过充电解除电压(Vocr)以下,也不能解除过充电状态。通过断开充电器的连接,VM端子电压上升到充电过流保护电压(Vcha)以上时,过充电状态解除。

#### 3. 过放电状态

正常工作状态下的电池,在放电过程中,连接在VDD与VC端子之间电池1的电压或连接在VC与VSS端子之间电池2的电压,降低到过放电保护电压(V<sub>OD</sub>)以下,并且这种状态持续的时间超过过放电保护延迟时间(T<sub>OD</sub>)时,IC的DO端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"过放电状态"。

当IC进入过放状态后,有以下三种方法解除:

- 1) 连接充电器,若VM端子电压低于充电过流保护电压(V<sub>CHA</sub>),当电池1和电池2的电压都高于过放电保护电压(V<sub>OD</sub>)时,过放电状态解除,恢复到正常工作状态,此功能称为充电器检测功能。
- 2) 连接充电器,若VM端子电压高于充电过流保护电压(V<sub>CHA</sub>),当电池1和电池2的电压都高于过放电解除电压(V<sub>ODR</sub>)时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,当电池1和电池2的电压都高于过放电解除电压(V<sub>ODR</sub>)时,过放电状态解除,恢复到正常工作状态,即"无休眠功能"。

#### 4. 放电过流状态

正常工作状态下的电池,IC通过VM端子电压持续检测放电电流。如果VM端子电压超过放电过流保护电压(V<sub>EC</sub>),并且这种状态持续的时间超过放电过流保护延迟时间(T<sub>EC</sub>),则DO端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"放电过流状态"。

而如果VM端子电压超过负载短路保护电压(V<sub>SHORT</sub>),并且这种状态持续的时间超过负载短路保护延迟时间(T<sub>SHORT</sub>),则DO端子输出电压也由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"负载短路状态"。进入放

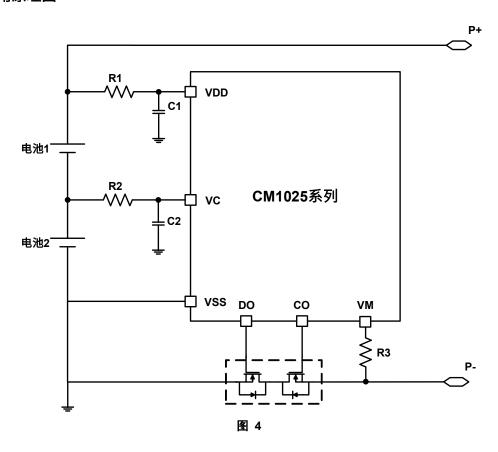


电过流保护状态后,当VM电压低于3V时放电过流状态解除,恢复为正常状态。

#### 5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果VM端子电压低于充电过流保护电压(V<sub>CHA</sub>),并且这种状态持续的时间超过充电过流保护延迟时间(T<sub>CHA</sub>),则CO端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET,停止充电,这个状态称为"充电过流状态"。

进入充电过流保护状态后,如果断开充电器使VM端子电压高于充电过流检测电压(V<sub>CHA</sub>)时,充电过流状态被解除,恢复到正常工作状态。


#### 6. 向 **0V** 电池充电功能(允许)

此功能用于对已经自放电到0V的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于 "向0V电池充电的充电器起始电压(V<sub>0CH</sub>)"时,充电控制用MOSFET的门极固定为VDD端子的电位,由于充电器电压使 MOSFET的门极和源极之间的电压差高于其导通电压(V<sub>th</sub>),充电控制用MOSFET导通,开始充电。这时放电控制用MOSFET 仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电保护电压(V<sub>OD</sub>)时,IC进入正常工作状态。

注意:请询问电池供应商,确认所购买的电池是否具备"允许向0V电池充电"的功能,还是"禁止向0V电池充电"的功能。

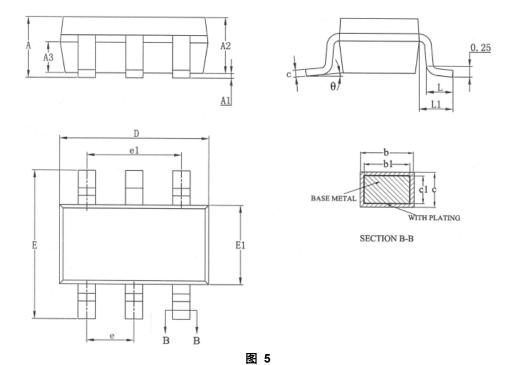


### ■ 典型应用原理图



| 器件标识  | 典型值  | 参数范围        | 单位 |
|-------|------|-------------|----|
| R1,R2 | 330  | 100 ~ 510   | Ω  |
| C1    | 0.1  | 0.01 ~ 1.0  | μF |
| C2    | 0.1  | 0.01 ~ 1.0  | μF |
| R3    | 2000 | 1000 ~ 4000 | Ω  |

表 8


- 1) R1或R2连接电阻过大,会影响检测电压精度。当充电器反接时,电流从充电器流向IC,若R1或R2过大有可能导致VDD-VSS端子间电压超过绝对最大额定值的情况发生。
- 2) R3选取过大电阻,当连接充电器的电压过高时,有可能导致不能关断充电电流的情况发生。但为控制充电器反接时的电流,不可选取过小的阻值。

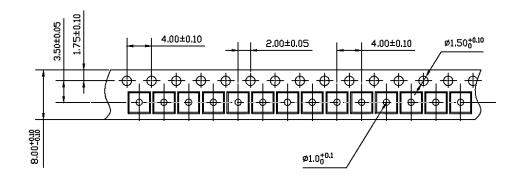
#### 注意

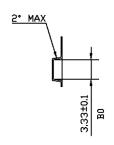
- 1. 上述参数有可能不经预告而作更改。
- 2. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

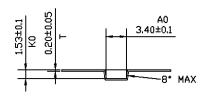


# ■ 封装信息




单位: mm


| SYMBOL     | MIN  | NOM  | MAX  |
|------------|------|------|------|
| Α          | -    | -    | 1.45 |
| <b>A</b> 1 | 0    | -    | 0.15 |
| A2         | 0.90 | 1.15 | 1.30 |
| А3         | 0.60 | 0.65 | 0.70 |
| b          | 0.39 | -    | 0.49 |
| b1         | 0.35 | 0.40 | 0.45 |
| С          | 0.08 | -    | 0.22 |
| c1         | 0.08 | 0.13 | 0.20 |
| D          | 2.70 | 2.90 | 3.10 |
| E          | 2.60 | 2.80 | 3.00 |
| E1         | 1.40 | 1.60 | 1.80 |
| е          | 0.85 | 0.95 | 1.05 |
| e1         | 1.80 | 1.90 | 2.00 |
| L          | 0.35 | 0.45 | 0.60 |
| L1         | 0.35 | 0.60 | 0.85 |
| θ          | 0°   | -    | 8°   |


表 9



# ■ 载带信息







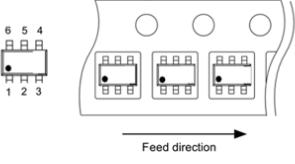



图 6



# ■ 卷盘信息

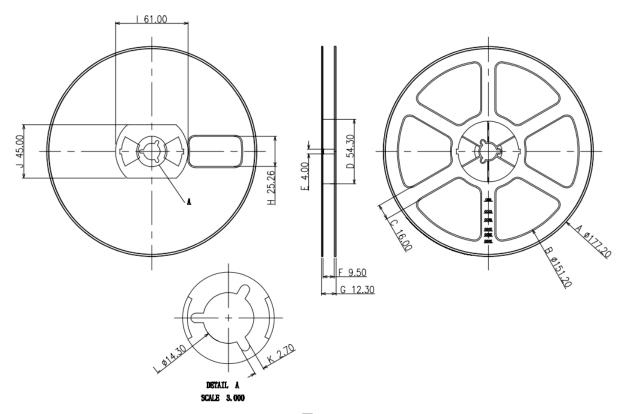



图 7

# ■ 包装信息

| 卷盘  | PCS/盘    | 盘/盒 | 盒/箱 |
|-----|----------|-----|-----|
| 7"盘 | 3000 PCS | 10  | 4   |



### 使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 2. 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题,本公司对此概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗 不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公 司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可靠性电路中,例如: 医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等,亦不得作为其部件使用。 本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自行 负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容,未经本公司许可,严禁用于其它目的的转载或复制。